
1 
 

One-Dimensional Phase Unwrapping Problem 

By Dr. Munther Gdeisat and Dr. Francis Lilley 

1. Introduction to one-dimensional phase unwrapping 

There are many digital signal-processing techniques that use the four quadrant arctangent function 
to calculate the phase of a signal. You should be aware that there are many algorithms that are 
available to calculate the phase of a signal, however the explanation of these algorithms is beyond 
the objectives of this tutorial which concentrates solely on the phase unwrapping process. The 
amplitude of the phase that is calculated can take any value and typically exceeds the range [-π,π] 
that is returned by the arctangent function. In cases where the phase exceeds this range of values, it 
will be wrapped so that it stays within the normal range [-π,π]. In such cases the wrapped phase will 
contain one, or more 2π jumps.  

Suppose that we have a discrete signal x(n) whose amplitude exceeds the range [-π,π]. Sometimes 
here we shall refer to the function x(n) as simply x for brevity. Also, we shall refer to the four 
quadrant arctangent function as atan2. Please note that we are dealing here with discrete signals. 
We can wrap the signal x(n) as follows.    

1. Calculate the sinusoidal value of x 
2. Calculate the cosinusoidal value of x 
3. Calculate the four quadrant arctangent (atan2) of sin(𝑥) and cos(𝑥).     

The four quadrant arctangent function can be calculated using the following equation; 

𝑎𝑡𝑎𝑛2(𝑎, 𝑏) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑡𝑎𝑛−1  �𝑎𝑏�                           𝑎 > 0 𝑎𝑛𝑑 𝑏 > 0      𝑓𝑖𝑟𝑠𝑡 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡

𝑡𝑎𝑛−1 �𝑎𝑏�  + 𝜋                    𝑎 > 0 𝑎𝑛𝑑 𝑏 < 0   𝑠𝑒𝑐𝑜𝑛𝑑 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡

𝑡𝑎𝑛−1 �𝑎𝑏� − 𝜋                    𝑎 < 0 𝑎𝑛𝑑 𝑏 < 0        𝑡ℎ𝑖𝑟𝑑 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡

 𝑡𝑎𝑛−1 �𝑎𝑏�                             𝑎 < 0 𝑎𝑛𝑑 𝑏 > 0      𝑓𝑜𝑢𝑟𝑡ℎ 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡

� 

Where 𝑎 and 𝑏 are real numbers. 

We can express the wrapping process mathematically as,  

𝑥𝑤(𝑛) = 𝒲[𝑥(𝑛)] 

Where x(n) is the original continuous phase signal, 𝒲[ ]is the phase wrapping operation and 𝑥𝑤(𝑛) 
is the wrapped phase signal. 

We will use Matlab software to perform the required computer simulations. Let us construct a signal 
𝑥(𝑛) whose amplitude exceeds the range [-π,π].  Then we will wrap this signal.  

The Matlab code to perform this task is given below; 

%This program is to simulate the wrapping process 
clc; close all; clear 
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The wrapped phase

%The number of samples in the signal 
N=512;       
n=0:N-1; 
fo=1/512;   
  
% The signal x whose amplitude exceeds the range [-pi,pi] 
x = 6*sin(2*pi*fo*n);  
plot(x) 
xlabel('Sample index') 
ylabel('Original phase in radians') 
axis([0 512 -6.5 6.5]) 
title('The signal x whose amplitude exceeds the range [-\pi,\pi]') 
  
%Calculating the wrapped signal using the four quadrant arctangent function  
xw = atan2(sin(x), cos(x)); 
figure, plot(xw) 
xlabel('Sample index') 
ylabel('Wrapped phase in radians') 
axis([0 512 -4 4]) 
title('The wrapped phase') 
 

 

 

 

 

 

 

 

 

 

 

The 2π jumps that are present in the wrapped phase signal that is shown in Figure  1 (b) must be 
removed in order to return the phase signal 𝑥𝑤(𝑛) to a continuous form and hence make the phase 
usable in any analysis or further processing. This process is called phase unwrapping and has the 
effect of returning a wrapped phase signal to a continuous phase signal that is free from 2π jumps. 
The basic phase unwrapping process can be explained by splitting the task down into the following 
steps.  

1. Start with the second sample from the left in the wrapped phase signal 𝑥𝑤(𝑛). 
2. Calculate the difference between the current sample and its directly adjacent left-hand 

neighbour. 
3. If the difference between the two is larger than +π, then subtract 2π from this sample and 

also from all the samples to the right of it.  

)(a )(b
Figure 1: (a) Continuous phase, (b) wrapped phase. 
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4. If the difference between the two is smaller than -π, then add 2π to this sample and also to 
all the samples to the right of it.  

5. Have all the samples in 𝑥𝑤(𝑛) been processed? If No then go back to step 2. If Yes then stop. 

The gradual progression of the phase unwrapping process is shown in Figure 2. The original wrapped 
phase signal 𝑥𝑤(𝑛) contains four wraps, as shown in Figure 2(a). The removal of the first wrap is 
shown in Figure 2(b). The removal of the second wrap is shown in Figure 2(c). The removal of the 
third wrap is shown in Figure 2(d). Once the fourth and final wrap is removed the signal has now 
been completely unwrapped, as shown in Figure 2(e).      
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)(e
Figure 2: (a) Wrapped phase, (b)-(e) the process of phase unwrapping. 
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The Matlab code to unwrap 𝑥𝑤(𝑛) is shown below.  

%Unwrap the signal xw(n) 
xu = xw; 
for i=2:length(xw) 
    difference = xw(i)-xw(i-1); 
    if difference > pi 
        xu(i:end) = xu(i:end) - 2*pi; 
    elseif difference < -pi 
        xu(i:end) = xu(i:end) + 2*pi;      
    end 
end 
figure, plot(xu) 
xlabel('Sample index') 
ylabel('Unwrapped phase in radians') 
axis([0 512 -6.5 6.5]) 
title('The unwrapped phase') 
 

We can express the unwrapping process mathematically as,  

𝑥𝑈(𝑛) = 𝒰[𝑥𝑤(𝑛)] = 𝑥𝑤(𝑛) + 2𝜋𝑘 

Where 𝒰[ ]is the phase unwrapping operation, 𝑥𝑈(𝑛) is the unwrapped phase signal and 𝑘 is an 
integer.  

The wrapped phase signal that is shown in Figure 2(a) is a very simple signal to unwrap. This is 
because 𝑥𝑤(𝑛)  is a simulated signal that does not contain any noise, and also because the sampling 
rate is sufficiently high here, as we have 512 samples per period.  

Phase unwrapping for practical real-world applications is actually one of the most challenging tasks 
in digital signal processing. This is because of two main reasons, which are; 

1. The wrapped signal may be noisy 
2. The wrapped signal may be under sampled.  

We will discuss these two cases in detail below;  

As we have explained previously, in order to perform the phase unwrapping process, the difference 
between a sample and the preceding sample (directly adjacent on its left) is calculated. When this 
difference is larger than +π, or smaller than -π, a phase wrap is detected. Once a phase wrap is 
detected, the value of 2π is either added, or subtracted, to/from this sample and also from all the 
further samples to the right-hand side of it. Now consider that the phase wrap that has just been 
detected can be either a ‘genuine phase wrap’, or might also be a ‘fake wrap’ that has been 
produced by noise in the signal. It is this distinction between true phase wraps and apparent phase 
wraps that have been caused by noise that make the practical phase unwrapping problem such a 
challenging task. The four wraps that were shown in Figure 1(b) are all genuine phase wraps. Now 
consider the wrapped phase signal that is shown in Figure 4(a). This signal contains four genuine 
phase wraps and one fake wrap.  

In the case where a genuine wrap has been detected, the phase unwrapping process continues its 
operation successfully. The existence of a fake wrap will affect the unwrapping of the sample where 
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the fake wrap is located and will also affect all the samples to the right of the wrap. Errors 
accumulate, as shown in Figure 4(c). This makes phase unwrapping such a difficult task, as an error 
in the determination of only a single phase wrap may affect a significant part of the entire signal 
because this error then propagates to the rest of the samples to the right-hand side of the 
problematic ‘detected’ wrap.  

2. Effect of noise on one-dimensional phase unwrapping 

Noise can have catastrophic effects on the phase unwrapping process. Let us use a computer 
simulation to illustrate this. Suppose that we have the discrete signal 𝑥(𝑛) and then we add white 
noise to this signal as follows; 

𝑥𝑛𝑜𝑖𝑠𝑒(𝑛) = 𝑥(𝑛) + 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 

Then we shall ‘wrap’ the noisy signal; 

𝑥𝑤𝑛𝑜𝑖𝑠𝑒(𝑛) = 𝒲[𝑥𝑛𝑜𝑖𝑠𝑒(𝑛)] 

After that, we shall attempt to unwrap the noisy wrapped phase signal  𝑥𝑤𝑛𝑜𝑖𝑠𝑒(𝑛); 

𝑥𝑈𝑛𝑜𝑖𝑠𝑒(𝑛) = 𝒰[𝑥𝑤𝑛𝑜𝑖𝑠𝑒(𝑛)] 

 

The Matlab code to perform the procedure that was outlined above is given below. Here we have 
set the variance of the noise to a value of 0.2. 

%This program is to simulate the wrapping process 
clc; close all; clear 
%The number of samples in the signal 
N=512;       
n=0:N-1; 
fo=1/512;   
% The signal x whose amplitude exceeds the range [-pi,pi] 
noise_variance = 0.2; 
x = 6*sin(2*pi*fo*n) + noise_variance*randn(size(n));  
plot(x) 
xlabel('Sample index') 
ylabel('Original phase in radians') 
title('The signal x whose amplitude exceeds the range [-\pi,\pi]') 
%Calculating the wrapped signal using the four quadrant arctangent function  
xw = atan2(sin(x), cos(x)); 
figure, plot(xw) 
xlabel('Sample index') 
ylabel('Wrapped phase in radians') 
title('The wrapped phase')  
%Unwrap the signal xw(n) 
xu = xw; 
for i=2:length(xw) 
    difference = xw(i)-xw(i-1); 
    if difference > pi 
        xu(i:end) = xu(i:end) - 2*pi; 
    elseif difference < -pi 
        xu(i:end) = xu(i:end) + 2*pi;      
    end 
end 
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figure, plot(xu) 
xlabel('Sample index') 
ylabel('Unwrapped phase in radians') 
title('The unwrapped phase') 
 
The result of running this Matlab program is shown below. In this case the noise does not adversely 
affect the phase unwrapping process.  

 

 

Let us repeat the above experiment, but this time we shall add a higher level of noise, i.e. with th 
The noise variance is now set to a higher value of 0.8. In this case, you can see that the higher noise 
level has seriously affected the phase unwrapping process. The phase unwrapping of the signal that 
is shown in Figure 4(b) is a challenging task. This is due to the existence of a fake wrap in the signal. 

 

 

 

 

The wrapped signal in Figure 4(a) contains four genuine phase wraps and one fake wrap. The 
existence of a fake wrap will affect not only the unwrapping of the sample where the fake wrap 
occurs, but all the subsequent samples that are located to the right-hand side of the wrap. Errors 
then accumulate, as shown in Figure 4(c), where all the unwrapped phase values to the right-hand 
side of the location of the fake wrap are incorrect. Let us re-iterate that it is this fact that makes 
phase unwrapping such a difficult task, because an error in determining only a single phase wrap 
may affect the majority of the signal due to propagation of errors.  

Figure 4: (a) Original noisy signal, (b) the phase wrapped signal, (c) the phase unwrapped signal. 
Here the noise variance has been increased to a value of 0.8. 

Figure 3: (a) Original noisy signal, (b) the phase wrapped signal, (c) the phase unwrapped signal. 
Here the noise variance has been set to a value of 0.2. 

wrapfake

)(c)(b)(a

)(c)(b)(a
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3. Effect of under sampling on one-dimensional phase unwrapping 

A phase unwrapper detects the existence of a wrap in a discrete signal by calculating the difference 
between two successive samples. If this difference is larger than +π, then the phase unwrapper 
considers that a wrap exists at this location. This could either be a genuine phase wrap, or it might 
be a fake wrap due to noise or under sampling. The effect of under sampling (phase aliasing) on one-
dimensional phase unwrapping can be explained as follows.  
Suppose that we have the discrete phase signal;  

𝑥(𝑡) = 10𝑠𝑖𝑛10𝑡,            0 ≤ 𝑡 ≤ 1 

The rate of phase change of the signal is given by differentiating the above equation to give; 

𝑑𝑥(𝑡)
𝑑𝑡

= 100𝑐𝑜𝑠10𝑡 

The maximum value for the phase change here is 100. Remember that the difference between two 
successive samples should be less than π, or else an unwrapping algorithm will incorrectly think that 
there is a phase wrap at this location, when there isn’t actually a wrap present. Therefore we can 
work out how many samples we must have in one cycle for this relation to hold true; 

100
𝑁

< 𝜋 

Where N, the sampling rate, is the number of samples in a cycle. Rearranging, this implies that 
sampling rate, i.e. the number of samples in a cycle; 

𝑁 >  
100
𝜋

= 31.83 

This means that for this example dataset, we must use at least 32 samples per cycle in order to avoid 
under-sampling. If we use less than this number of samples, then the difference between two 
successive samples of this signal may reach a value of pi (or higher) and hence be incorrectly 
regarded as being a true phase wrap, when there is actually no real phase wrap present, i.e. it would 
be a ‘fake wrap’. Note that, for discrete signals of finite length, if you know the sampling rate and 
the number of cycles, then you can work out the total number of samples over the entire signal 
length. This will be covered in further detail in the 2D unwrapping tutorial. 

Let us test this result using Matlab. The following Matlab program implements this concept. 

clc; close all; clear 
%N should be more than 32 to prevent under sampling effects on the phase 
%unwrapping process 
N=31; 
t=0:1/N:1; 
   
% The signal x whose amplitude exceeds the range [-pi,pi] 
x = 10*sin(10*t);  
plot(t,x,'*-') 
xlabel('time') 
ylabel('Original phase in radians') 
title('The signal x whose amplitude exceeds the range [-\pi,\pi]') 
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%Calculating the wrapped signal using the four quadrant arctangent function  
xw = atan2(sin(x), cos(x)); 
figure, plot(t,xw,'*-') 
xlabel('time') 
ylabel('Wrapped phase in radians') 
title('The wrapped phase') 
  
%Unwrap the signal xw(t) 
xu = xw; 
for i=2:length(xw) 
    difference = xw(i)-xw(i-1); 
    if difference > pi 
        xu(i:end) = xu(i:end) - 2*pi; 
    elseif difference < -pi 
        xu(i:end) = xu(i:end) + 2*pi;      
    end 
end 
figure, plot(t,xu,'*-') 
xlabel('time') 
ylabel('Unwrapped phase in radians') 
title('The unwrapped phase') 
 

Figure 5(a) shows the discrete signal  

𝑥(𝑡) = 10𝑠𝑖𝑛10𝑡,            0 ≤ 𝑡 ≤ 1 

With a sampling rate of N=32 samples per period. Then the phase signal is wrapped as is shown in 
Figure 5(b). After that the signal is unwrapped as shown in Figure 5(c). As can be seen in Figure 5(c) 
the phase unwrapper succeeds in processing the signal correctly when sampled at this rate.  

 

 

 

 

 

 

)(c)(b)(a

)( f)(e)(d

Figure 5: (a)-(c) Unwrapping a discrete signal that has an adequate sampling rate of N=32 
sampes per period, (d)-(f) Unwrapping a slightly under sampled discrete signal where N=31. 
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The above experiment is repeated using a slightly lower sampling rate, with N=31, as is shown in 
Figures 5(d)-(f). As you can see the phase unwrapper fails to correctly retrieve the signal. This error is 
produced due to under sampling of the original signal.  

As a result of this tutorial you should have an understanding of the one-dimensional phase 
unwrapping process and its basic mode of operation. You should also be familiar with the practical 
and theoretical limitations of phase unwrapping algorithms in terms of their performance in the 
presence of noise and due to variations in signal sampling rates. 

Note: Matlab produces a different sequence of noise on each execution of the randn command – 
as it is by definition pseudo random. This is the reason that you will get very similar, but not exactly 
the same, results as those that are presented in this tutorial.  

Exercises 

1. There is a function in Matlab called unwrap. This function implements a one-dimensional 
phase unwrapper. The source code for this function is reproduced below. Study this code 
and compare it with the phase unwrapper that is implemented in this tutorial. 

function up = unwrap(p) 
%UNWRAP unwrap phase 
  
  N = length(p); 
  up = zeros(size(p)); 
  pm1 = p(1); 
  up(1) = pm1; 
  po = 0; 
  thr = pi - eps; 
  pi2 = 2*pi; 
  for i=2:N 
    cp = p(i) + po; 
    dp = cp-pm1; 
    pm1 = cp; 
    if dp>thr 
      while dp>thr 
        po = po - pi2 
        dp = dp - pi2; 
      end 
    end 
    if dp<-thr 
      while dp<-thr 
        po = po + pi2 
        dp = dp + pi2; 
      end 
    end 
    cp = p(i) + po; 
    pm1 = cp; 
    up(i) = cp; 
  end 
  

2. Write a Matlab program to implement the one-dimensional phase unwrapping algorithm 
explained in Ref. 2. 
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3. A one-dimensional phase unwrapping algorithm can be implemented as shown in the 
Matlab program below. Explain the operation of this code.  

 
%This program is to simulate the wrapping process 
clc; close all; clear 
%The number of samples in the signal 
N=512;       
n=0:N-1; 
fo=1/512;   
% The signal x whose amplitude exceeds the range [-pi,pi] 
x = 6*sin(2*pi*fo*n);  
plot(x) 
xlabel('Sample index') 
ylabel('Original phase in radians') 
title('The signal x whose amplitude exceeds the range [-\pi,\pi]') 
%Calculating the wrapped signal using the four quadrant arctangent function  
xw = atan2(sin(x), cos(x)); 
figure, plot(xw) 
xlabel('Sample index') 
ylabel('Wrapped phase in radians') 
title('The wrapped phase')  
  
%Unwrap the signal xw(n) 
tic   %start measuring the execution time 
K=0; 
increments = zeros(size(xw)); 
for i=2:length(xw) 
    difference = xw(i)-xw(i-1); 
    if difference > pi 
        K = K - 2*pi; 
    elseif difference < -pi 
        K = K + 2*pi; 
    end 
    increments(i) = K; 
end 
xu = xw + increments; 
toc      %finish measuring the execution time 
figure, plot(xu) 
xlabel('Sample index') 
ylabel('Unwrapped phase in radians') 
title('The unwrapped phase') 
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4. The Matlab implementation of the one-dimensional phase unwrapping algorithm that is 
presented in exercise 3 is faster than the other algorithms that were explained in this 
tutorial and in exercises 1 & 2. Confirm this claim by measuring the execution time for these 
four different phase unwrapping algorithms at different sampling rates. Enter your results in 
the table below. Hint: use the tic and toc Matlab functions to measure the execution time 
of the code.    
 

Number of 
Samples  
N= 

Phase unwrapper 
implemented in 
section 1 of this 
tutorial 

Phase unwrapping 
function implemented 
in Matlab unwrap. 
(see exercise 1) 

Phase unwrapping 
implemented using 
the Itoh algorithm. 
(see exercise 2) 

Phase 
unwrapping 
implemented in 
exercise 3 

512     

1024     

5000     
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