The fall of Meroe: Invasion or decline? The dental evidence

Introduction

The Meroitic empire of ancient Nubia ruled over a vast area of the Nile Valley and its hinterlands from 800BC until 350AD¹. The empire was politically and culturally homogenous state, centred around the illustrious capital Meroe. In the 4th Century AD, the power and influence of the empire was declining and ultimately Meroe is abandoned¹. The causes for the demise the empire have been widely debated. A popular theory is that Aksumites from northeast Africa were, in part, responsible. The Aksumites controlled the Horn of Africa from around 150BC – 700AD, interacting with both the Nubians and Egyptians². The 4th century was a period of growth and development for the Aksumites, where their wealth and political influence increased². It has been posited that Aksumite influence was responsible for the final demise of Meroe after a period of decline¹. This study explores if there is evidence of an Aksumite presence in Nubia after the Meroitic period and whether they permanently settled the region. Dental evidence will be used to investigate if northeast African groups may have contributed to the local gene pool or if there was biological continuity between the time periods.

Materials and Methods

The dentition from 6 Nubian and 2 East African groups were included in the study. The groups consisted of 3 sites from the Fourth Cataract region of Upper Nubia, 3 from Lower Nubia and two from East Africa (see Figure 1). Details of the sites can be found in **Table 1**. The Nubian assemblages date from the Meroitic (300BC) to Medieval periods (AD 1500). Upper and Lower Nubian groups were chosen to also test if regionality affected patterning observed in the data. Data from 36 non-metric dental traits were used to assess inter-group bio-distances, following the ASUDAS system³ (see Figure 2). These data were dichotomised into present or absent using standard breakpoints. To further quantify the inter-group distances, the Mean Measure of Divergence (MMD) was applied. The data was edited to achieve the most reliable results from the MMD analysis. As such, traits were removed which were non-discriminatory, correlated, or where the sample size was too small (<10)⁴. Twenty-one traits remained after editing. Lastly, Multi-Dimensional Scaling (MDS) was used to illustrate inter-group relationships.

issue 11, 2007.

Acknowledgements

Support from the Wellcome Trust (British Museum grant 097365/Z/11/Z), Liverpool John Moores University (Matched-Funded PhD Scholarship), the National Science Foundation (BNS-9013942, BNS-0104731), and the Institute for Bioarchaeology.

Museum

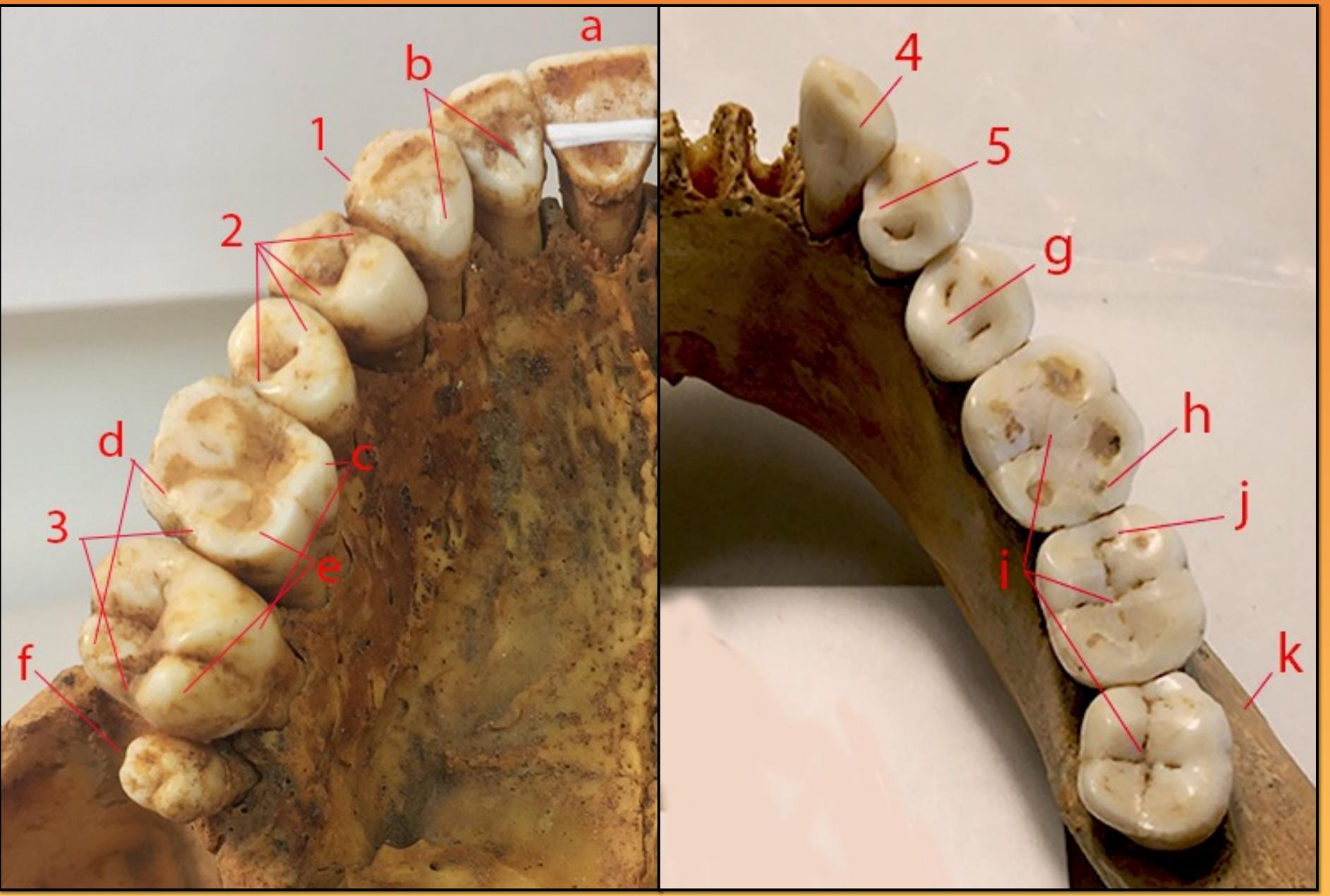
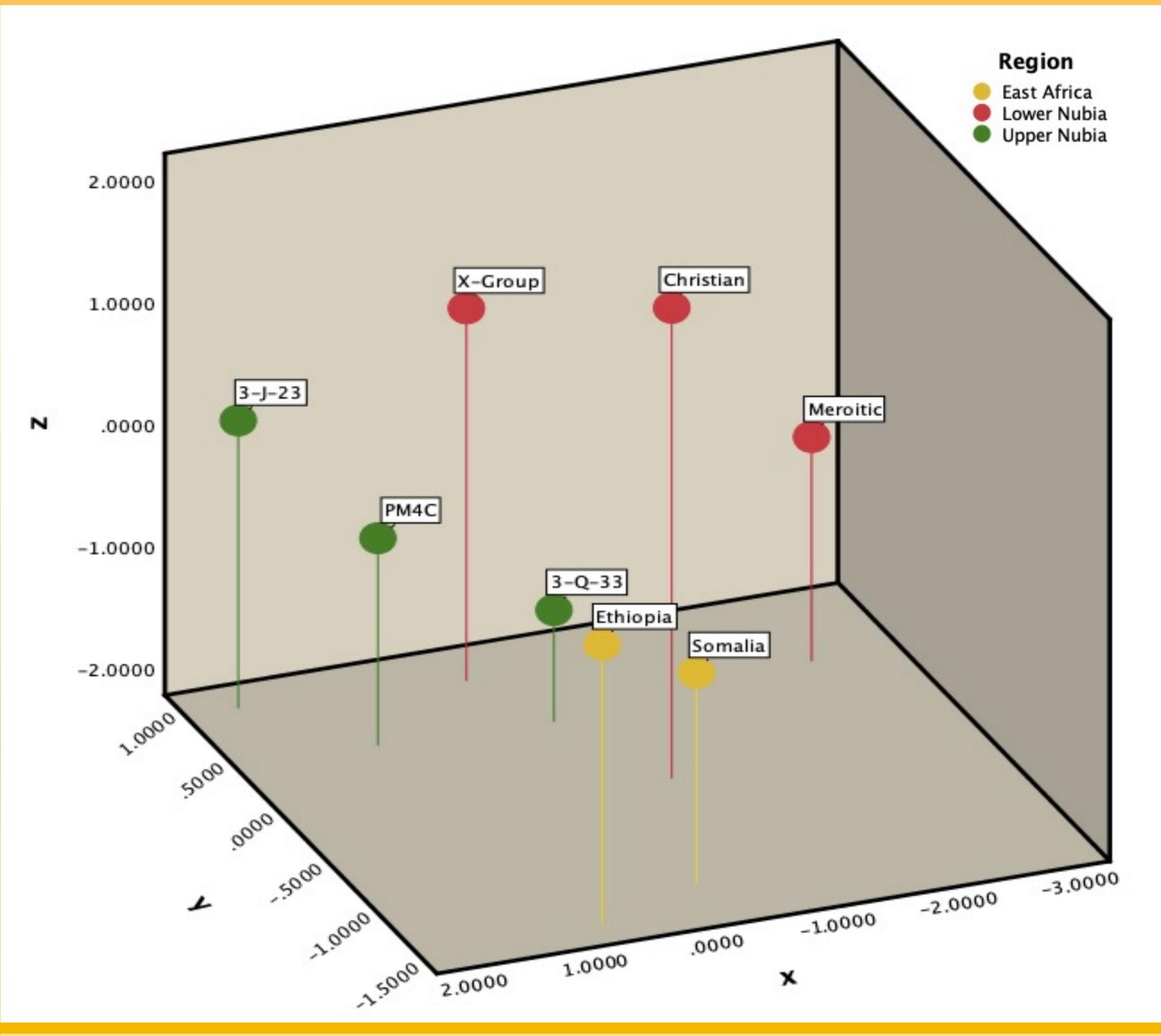



Figure 2. Upper and lower dentition of individuals from the Fourth Cataract collection, curated at the British Museum. Letters indicate trait is present, numbers indicate where traits are absent. a- labial curvature, b- tuberculum dentale, c- Carabelli's cusp, d- metacone, e- hypocone, f- reduced 3rd molar, gmultiple LP2 lingual cusps, h-LM cusp 5, i-LM groove patter (M1 & M2 = Y, M3 = X), j-anterior fovea, k-torsomolar angle (buccal direction). 1- double shoveling & distal accessory ridge, 2- Premolar accessory cusps, 3- UM cusp 5, 4- distal accessory ridge, 5- LP1 lingual cusp.

Figure 3. MDS of 21-trait MMD results.

United Kingdom

Region	Assemblage	Number of individuals	Date	Sites/Region of Origin
4 th Cataract	3-J-23	109	Medieval/Christian, AD 550 - 1500	Fourth Cataract
	PM4C ▲	30	Post-Meroitic, AD 350 – 550	Fourth Cataract,
	3-Q-33	29	Meroitic, 100BC -350AD	Fourth Cataract
Lower Nubia	Christian*	41	Medieval, AD 350 - 1350	Faras to Gamai
	X-Group*	62	Post-Meroitic 350 – 550	Semna; Faras to Gamai
	Meroitic*	94	Meroitic, 100BC -350AD	Semna; Faras to Gamai
East Africa	Ethiopia**	40	19 th /20 th Century	North central Ethiopia
	Somalia***	77	19 th /20 th Century	Somalia, E. Ethiopia

Table 1. Skeletal assemblages used in study. ▲ Assemblage comprised from 4-M-53, 3-O-1 & 3-Q-33. *Taken from Irish (2005)⁵ **Irish, unpublished ⁶ ***Irish *et al.* $(2020)^7$

Results

MMD results, in **Table 2**, reveal that the East African groups are more phenetically similar to the 4th Cataract groups (MMD= 0.09-0.20) than the Lower Nubian collections (MMD= 0.05-0.20). Additionally, all the Lower Nubian assemblages are significantly different from the East African collections. Broad temporal patterning can also be seen with the post-Meroitic assemblages the most similar to the East African groups and the Meroitic collections indicating the greatest difference. Considering the MMD data by region, the pattern in the 4th Cataract differs to the general Nubian data, with the Meroitic site, '3-Q-33', more similar to East African dentition than the Medieval site, '3-J-23'. Patterning on the MDS, Figure 3, shows that the 4th Cataract groups are show a greater affinity with the East African groups, indicating that geography had a greater effect on the biodistance than temporal changes.

	PM4C	3J23	3Q33	Ethiopia	Somalia	Christian	Meroitic	X-Group
PM4C	0							
3J23	0.0374	0						
3Q33	0	0.1202	0					
Ethiopia	0.0761	0.0994	0.0918	0				
Somalia	0.0611	0.1359	0.0539	0.0108	0			
Christian	0.1206	0.1647	0.1423	0.0986	0.0867	0		
Meroitic	0.2028	0.2400	0.0894	0.2015	0.1308	0.1269	0	
X-Group	0.0255	0.0599	0.0729	0.0996	0.1030	0.0122	0.1279	0
x-Group	0.0255	0.0599	0.0729	0.0990	0.1050	0.0122	0.12/9	U

Table 2. 21 trait MMD values

Discussion and Conclusion

The results suggest that gene flow from East Africa is more associated with geography than with broad temporal shifts. The Fourth Cataract assemblages are geographically closer to the Ethiopia and Somalia, also sharing a greater biologically affinity, when compared to the Lower Nubian groups. Although temporal shifts could be observed, with the phenetic affinity between the Nubian assemblages and East African groups changing over time, the patterning was not the same in Lower and Upper Nubia regions. For the Upper Nubian 4th Cataract sites, the post-Meroitic (PM4C) group was most phonetically similar to the East African collections, followed by the Meroitic (3-Q-33) and then the Medieval (3-J-23). This indicates that there may have been gene-flow between East Africa and Upper Nubia during the Meroitic period, which increased in the post-Meroitic period. It is thought that there were interactions and potentially trade between the Meroitic empire and the Aksumite empire¹, and these data indicates there also could have been mixing of people as well. The East African samples are significantly different from the Medieval assemblage (3-J-23). This could imply that the genetic influence from East Africa only lasted a few centuries after the fall of the Meroitic empire. The Lower Nubian assemblages are all significantly different from the East African collections, with the Meroitic collection showing the least affinity. This implies that gene flow from East Africa may not have penetrated into the northern parts of Nubia. The disparities between the two Meroitic collections (3-Q-33 and Meroitic) illuminate that gene flow patterning in Nubia is changeable, even in the relative hegemony of the Meroitic empire. Comparative dental data from East Africa has helped illuminate the potential extent of gene flow between two major political entities in sub-Saharan Africa. The data suggests the relationship between the two was more influenced by geography than by temporal shifts.

References

1. Edwards, D. N. (2004) The Nubian past: An Archaeology of the Sudan, Routledge, Abingdon. 2. DiBlasi, M. (2005) Foreword, Michels, J. W.. Changing settlement patterns in the Aksum-Yeha region of Ethiopia: 700 BC-AD 850. BAR International Series, 1446, ix-xvii. BAR publishing, Oxford. 3. Scott, G.R. and Irish, J.D., (2017) Human tooth crown and root morphology. Cambridge University Press, Cambridge. 4. Sjøvold, T. (1977) Non-Metrical Divergence Between Skeletal Populations: The Theoretical Foundation and Biological Importance of Cab Smith's Mean Measure of Divergence. *Ossa*, 4(1), 1-133.

Anthropology, 128(3), 520-535. 6. Irish, J.D., Unpublished data.

7. Irish, J. D., Morez, A., Girdland Flink, L., Phillips, E. L., & Scott, G. R. (2020). Do dental nonmetric traits actually work as proxies for neutral genomic data? Some answers from continental-and global-level analyses. American Journal of Physical Anthropology, 172(3), 347-375.

Emma L. W. Philips ^{1,2}, Joel D. Irish ¹ and Daniel Antoine ²

School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF,

Department of Egypt and Sudan, The British Museum, Great Russell Street, London WC1B 3DG, UK

5. Irish, J. D. (2005) Population continuity vs. discontinuity revisited: Dental affinities among late Paleolithic through Christian-era Nubians. American Journal of Physical