

AI-ENABLED GLAUCOMA DETECTION

GLAUCOMA = THE SILENT THIEF OF SIGHT

- Progressive & asymptomatic disease of optic nerve head (ONH)
 - Results in loss of peripheral vision
 - Mainly caused by increased intraocular pressure

EFFECTS ON THE INDIVIDUA

- Decrease in quality of life & independence
- Increase in falls & road traffic accidents

WORLDWIDE BURDEN

Leading cause of <u>irreversible blindness</u> worldwide

Cases of glaucoma are predicted to rise by 45% in 20 years

IF caught early, treatment can stop/slow glaucoma progression EARLY CASE DETECTION IS KEY!

CURRENT PRACTICE OF DETECTING GLAUCOMA

Fundus images capture the ONH, they are assessed by experts to detect the presence of glaucoma

Fundus images are cheap & non-invasive

Manual image assessment can be <u>costly</u>, <u>subjective</u>, AND requires advanced clinical expertise

Developing nations lack resources, clinicians, and infrastructure, resulting in many cases of preventable blindness

ARTIFICIAL INTELLIGENCE HELP?

Can we develop AI to mimic clinicians' diagnosis of glaucoma from fundus images?

AIM

Develop an Al-enabled framework for glaucoma detection using low-cost fundus imaging

OBJECTI

Literature review of existing Al-enabled glaucoma detection methods Main findings (Coan et al., 2022)

Work done in collaboration with Bryan Williams, Krishna Adithya Venkatesh, Swati Upadhyaya, Silvester Czanner, Rengaraj Venkatesh, Colin E Willoughby, Srinivasan Kavitha and Gabriela Czanner

Lauren Coan

• Fundus imaging provides high-quality, yet low-cost images

 One-step & two-step AI algorithms have been developed showing promising results

• Two-step algorithms have inherent interpretability & explainability • Higher quality reporting and further external testing is required before methods can be translated into clinical practice

Acknowledgements:

Develop

INDIA

VITIAL RESULTS

TESTING

References:

OBJECTIVES 2 – 5

pment of a statistical model to underpin the Al				
- oluding	• Increase interpretability &			
	explainability			

- Uncertainty quantification
 - Incorporate further imaging data

RETROSPECTIVE & PROSPECTIVE DATASETS COLLECTED FROM ARAVIND EYE CARE SYSTEM

AUC	SENSITIVITY	SPECIFICITY
0.98	0.98	0.97
0.96	0.93	0.92

High performance metrics by using clinical features extracted from the fundus images

Al can correctly predict unseen test images with high accuracy

POTENTIAL IMPACT

- Prevention of irreversible blindness in many more
- individuals than current services allow, particularly
- in developing nations
- Reduction of workload for clinicians, allowing more time to focus on patients
- **Reduction of associated costs with manual image** assessments
- Advancement in AI for disease detection

MacCormick IJC et al. (2019) Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. PLOS ONE 14(1): e0209409. https://doi.org/10.1371/journal.pone.0209409

Coan et al. (2022) Automatic detection of glaucoma via fundus imaging and artificial intelligence A review. arXiv preprint arXiv:2204.05591. 2022 Apr 12.