

Using the Experience of the Liverpool Telescope to Solve the New Robotic Telescope Scheduling Problem

David J Law PhD Student : d.j.law@2021.ljmu.ac.uk

1. The Problem

Time Domain Astronomy

Time-domain astronomy observes rapidly changing targets, e.g. gamma-ray bursts and gravitational waves, whose nature varies on a scale of minutes. The NRT scheduler thus needs to make rapid decisions with the flexibility to move to these targets of opportunity quickly. [1]

The LT currently scores all possible queued observations choosing the highest scoring. effiency gain Predicting forward environmental conditions for a 4-hour window could give efficiency gains of >23% by informing

40% Time allocated

The NRT utilises an entirely new hybrid observing model with ~40% of the total for SPEC survey telescope time ring-fenced for 'SPEC' time. This new model

allows collaboration between investigators and results in less time spent repeating observations, boosting efficiency. [1]

Current and future telescopes produce increasing numbers of fainter and faster targets (see right), dictating NRT's design requirements for more rapid follow-up spectral classification.

scheduling decisions. [2]

3. The Experience

The LT, operational since 2003, has provided >4.1 million observations distributed across the sky (see left). The higher density towards the plot's centre shows that the LT scheduler prefers rising targets.

597 FITS headers used

Each observation generates large volumes of metadata stored in FITS headers plus associated night reports and weather data creating a 'big data problem' to be solved. This will form the training data for the predictive algorithms used by the scheduler.

2. The New Robotic Telescope

18 Mirror segments

The NRT mirror has 18 hexagonal segments vs the single mirror on the LT, reducing weight and allowing faster slew speeds. [1]

The NRT promises a 20% sensitivity gain over the LT, which can only observe ~66% of gamma-ray bursts detected by Swift. [4]

86% **Swift GRBs** observable

5x the number of spectral classifications delivered worldwide in 2019.[5]

10,000 targets classified per year

The time from receiving a transient survey's alert to being on target is 4x faster than the LT's current fastest response. [1]

4. The Solution

Work Package 1: Predictive modelling

selection?

~(17:40:00, -30).

Multiple Feature

Although the LT's coverage is very

distributed in stellar coordinates,

historical data is plotted using

Milky Way's galactic centre is at

Predictions generated

Sky simulation?

Work Package 2: Simulation

Telescope simulation?

Schedule simulation?

Further Information

Testing

Software Testing?

models?

Work Package 3: Integration and

Statistical Integration Testing?